

EOS AM-1 Mission Operations Review

EOS AM-1 SCIENCE OVERVIEW

DR. YORAM KAUFMAN EOS AM Project Scientist

Goddard Space Flight Center/Code 913
Greenbelt, MD 20771 USA
E-mail: yoram.kaufman@gsfc.nasa.gov

EOS AM Science Team

Yoram Kaufman – AM Project Scientist (new)

Jon Ranson – Deputy AM Project Scientist

Jim Collatz – Associate in Relation to IDS Investigations

Francesco Bordi – AM Project Liaison

EOS AM-1 Instruments

ASTER – Advanced Spaceborne Thermal Emission and Reflection Radiometer

CERES – Clouds and the Earth's Radiant Energy System

MISR – Multiangle Imaging Spectroradiometer

MODIS – Moderate-Resolution Imaging Spectroradiometer

MOPITT – Measurements of Pollution in the Troposphere

EOS-Arrhenius

"Is the mean temperature of the ground in any way influenced by the presence of the heat-absorbing gases in the atmosphere?"

 S. Arrhenius*, Philosophy Magazine and Journal of Science, 1896

*The first to calculate the effects of doubling by CO₂

Scientific Prioritiesof MTPE and EOS

- <u>Land cover change and global productivity</u> Trends and patterns of change in regional land cover, biodiversity and global primary production
- <u>Seasonal to Interannual climate prediction</u> Improve forecasts of timing and geographical extent of transient climate anomalies such as El Niño and volcanoes
- <u>Natural hazards</u> Disaster characterization and risk reduction from earthquakes, wildfires, volcanoes, floods, and droughts
- <u>Long-term climate variability</u> Determine mechanism and factors that determine long-term climate variation and trends, including human impact
- <u>Atmospheric ozone</u> Detect changes, causes, and consequences of changes in atmospheric ozone

Specific Objectives of EOS AM-1

- 1. Provide the first state distribution of the main Earthatmosphere coupled measurements (1 to 2 years)
 - V global bio-productivity (land and oceans)
 - L land use, land cover, snow and ice
 - T global surface temperature day and night
 - C clouds (macrophysics, microphysics, and radiative effects)
 - R radiative energy fluxes
 - A aerosol properties and water vapor
 - F fire occurrence and trace gases
- 2. Improve the knowledge of detection of human impact on climate: "fingerprints" (1 to 2 years)
 - Compare climate models with updated global distributions of land use change, aerosol, water vapor, clouds and radiation, trace gases, and oceanic productivity with measurements

Specific Objectives of EOS AM-1 (Cont'd)

- 3. Improve forecasts of the timing and geographical extent of transient climatic anomalies (1 to 2 years)
 - Investigate relation of regional and annual variations of clouds, aerosol, water vapor, biota in land and oceans, fires and trace gases, the radiation field to major impacts: El Nino, volcanic activity
- 4. Improve seasonal and interannual predictions using EOS-Arrhenius (and later EOS-altimeter/radar, PM-1) data set (1 to 6 years)
- 5. Develop technologies for disaster prediction and characterization and risk reduction from wildfires, volcanoes, floods, and droughts (1 to 2 years)
- 6. Start EOS monitoring of change in climate and global environment (1 to 15 years)

Contribution of EOS Arrhenius to MTPE 24 Prioritized Global Environmental Variables

Discipline	Measure	EOS AM-1 Instrument	Fulfillment of the Measure
ATMOSPHERE	Cloud Properties	MODIS, CERES, MISR ASTER/Landsat	Full
	Radiative Energy Fluxes	CERES	Full
	Precipitation Tropospheric Chemistry	 MOPITT	— Partial
	Stratospheric Chemistry	MOPITT	Partial Full
	Aerosol Properties Atmospheric Temperature Atmospheric Humidity Lightning	MISR, MODIS MODIS MODIS —	Partial Partial —
LAND	Land Cover and Land Use Chan Vegetation Dynamics Surface Temperature Fire Occurrence Volcanic Effects Surface Wetness	MODIS, MISR, ASTER/Landsat MODIS, MISR, ASTER/Landsat MODIS, ASTER MODIS, ASTER MODIS, ASTER MODIS	Full Full Full Full Full Partial
OCEAN	Surface Temperature Phytoplankton & Dissolved Organic Matter Surface Wind Fields	MODIS, ASTER MODIS, MISR —	Full Full —
	Ocean Surface Topography	_	_
CRYOSPHERE	Ice Sheet Topography & Ice Vol Change	_	_
	Sea Ice Snow Cover	MODIS, MISR, ASTER/Landsat MODIS, MISR, ASTER/Landsat	Full
SOLAR RADIATION	Total Solar Irradiance Ultraviolet Spectral Irradiance		_

Note: Italicized measures are not performed by AM-1.

Early Scientific Results for **EOS AM**

- Images/videos (2 months) from several instruments
 - Examples
 - » Hurricane
 - » Volcano (preferably with fire)
 - » Wildfire
 - » Deforestation scars and fires
 - » Glacier
- Product images and video (6 to 12 months)
 - Examples
 - » Global annual cirrus cloud cover, properties
 - » Seasonal variation of fires in the tropics
 - » Seasonal variation of bio-productivity

Early Scientific Results for EOS AM (Cont'd)

- Major science impact (1 to 2 years)
 - Examples
 - » Droughts, changes in land and ocean biota
 - » Fingerprints of climate change
 - » Seasonal predictions (El Niño)
 - » Annual deforestation/reforestation
- Early Science Advisory Board

Science Management

- Land algorithm theoretical basis document (ATBD) Workshop
 - Excellent critical review document
- International workshop on remote sensing of aerosol and atmospheric corrections
 - EOS, Advanced Earth Observing Satellite (ADEOS), **Environmental Satellite (ENVISAT), intercomparisons, JGR** special issue, discussion summaries
- Plans for cloud international workshop
- LAND workshops
- **MODIS Modelers (MODLERS) meeting**
- **International Land Surface Temperature**
- **International Fire Algorithm Workshop [International Geosphere-Biosphere Programme (IGBP)**]

Science Management (Cont'd)

- Land Cover Workshop
- International Bidirectional Reflectance Distribution Function (BRDF) Meeting
- Instrument Liaison Systeme pour l'Observation de la Terre (France) (SPOT) [Vegn/Polder, Global Imager (GLI)]
- EOS Test Site Coordination Meeting
- ATBD second review in November and December
- Version 1 delivery, EOS science driven software
- Schedule for Version 2 depends on EOS Data and Information System (EOSDIS) schedule, final version software
- New science team members and new interdisciplinary science (IDS) investigators selected

Interaction With EOSDIS

- **Project Scientist and Science Working Group for the AM Project** (SWAMP) provide guidance for implementation by IOTs and **EOSDIS**
- Project Scientist resolves conflicts as needed during the mission
- Discussion of options in the context of the EOSDIS replan
- Science software needs time for proper integration and testing. No last-minute changes in environment. Deep science involvement is necessary.
- Contingency plans and activities need to be initiated by instrument teams (ITs) and Distributed Active Archive Centers (DAACs) with ESDIS to allow production and distribution of data at launch
- Phase-in implementation of the science; start with reduced data rate (resolution)

Prelaunch Validation

- Smoke Cloud and Radiation MODIS atmosphere and land experiment in Brazil
- Advanced Very High Resolution Radiometer (AVHRR) global fire prototyping – IGBP
- Chile Version 1 algorithm testing land
- Validation Prototyping Campaign (United States, 1997)
- Preparation for postlaunch validation
 - AErosol RObotic NETwork (Aeronet), West Virginia
 - Announcement of Opportunity (AO) approximately December
- Regional Science Assessment and EOS Validation Campaign (southern Africa, 1999)

Conclusions

- Focus science on the AM-1 mission as part of EOS 15-year record and as an independent first EOS platform
- Advantages to science of integrated five-instrument platform
- Brochure for EOS AM-1: Summary of Mission and Science